博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
(转)Awsome Domain-Adaptation
阅读量:7186 次
发布时间:2019-06-29

本文共 5769 字,大约阅读时间需要 19 分钟。

Awsome Domain-Adaptation

2018-08-06 19:27:54

 

This blog is copied from:  

 

This repo is a collection of AWESOME things about domian adaptation,including papers,code etc.Feel free to star and fork.

Contents

Papers

Overview

  • Deep Visual Domain Adaptation: A Survey 
  • Domain Adaptation for Visual Applications: A Comprehensive Survey 

Theory

  • Analysis of Representations for Domain Adaptation 
  • A theory of learning from different domains 
  • Learning Bounds for Domain Adaptation 

Unsupervised DA

Adversarial Methods

  • M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning  
  • Augmented Cyclic Adversarial Learning for Domain Adaptation 
  • Factorized Adversarial Networks for Unsupervised Domain Adaptation 
  • DiDA: Disentangled Synthesis for Domain Adaptation 
  • Unsupervised Domain Adaptation with Adversarial Residual Transform Networks 
  • Simple Domain Adaptation with Class Prediction Uncertainty Alignment 
  • Causal Generative Domain Adaptation Networks 
  • Conditional Adversarial Domain Adaptation 
  • Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization 
  • Learning Semantic Representations for Unsupervised Domain Adaptation  
  • CyCADA: Cycle-Consistent Adversarial Domain Adaptation  
  • From source to target and back: Symmetric Bi-Directional Adaptive GAN   
  • Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation 
  • Maximum Classifier Discrepancy for Unsupervised Domain Adaptation  
  • Domain Generalization with Adversarial Feature Learning 
  • Adversarial Feature Augmentation for Unsupervised Domain Adaptation  
  • Duplex Generative Adversarial Network for Unsupervised Domain Adaptation  
  • Generate To Adapt: Aligning Domains using Generative Adversarial Networks  
  • Image to Image Translation for Domain Adaptation 
  • Unsupervised Domain Adaptation with Similarity Learning 
  • Conditional Generative Adversarial Network for Structured Domain Adaptation 
  • Collaborative and Adversarial Network for Unsupervised Domain Adaptation  
  • Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation 
  • Multi-Adversarial Domain Adaptation  
  • Wasserstein Distance Guided Representation Learning for Domain Adaptation  
  • Incremental Adversarial Domain Adaptation for Continually Changing Environments 
  • A DIRT-T Approach to Unsupervised Domain Adaptation  
  • Label Efficient Learning of Transferable Representations acrosss Domains and Tasks  
  • Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation 
  • Adversarial Discriminative Domain Adaptation   
  • Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks  
  • Domain Separation Networks 
  • Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation 
  • Domain-Adversarial Training of Neural Networks 
  • Unsupervised Domain Adaptation by Backpropagation    

Network Methods

  • Boosting Domain Adaptation by Discovering Latent Domains 
  • Residual Parameter Transfer for Deep Domain Adaptation 
  • Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation 
  • Deep CORAL: Correlation Alignment for Deep Domain Adaptation 
  • Deep Domain Confusion: Maximizing for Domain Invariance 

Optimal Transport

  • DeepJDOT: Deep Joint distribution optimal transport for unsupervised domain adaptation 
  • Joint Distribution Optimal Transportation for Domain Adaptation   

Incremental Methods

  • Incremental Adversarial Domain Adaptation for Continually Changing Environments 
  • Continuous Manifold based Adaptation for Evolving Visual Domains 

Other Methods

  • Unsupervised Domain Adaptation with Distribution Matching Machines 
  • Self-Ensembling for Visual Domain Adaptation 
  • Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation 
  • Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation 
  • Associative Domain Adaptation  
  • Learning Transferrable Representations for Unsupervised Domain Adaptation 

Zero-shot DA

  • Zero-Shot Deep Domain Adaptation 

Few-shot DA

Image-to-Image Translation

  • JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets  
  • Multimodal Unsupervised Image-to-Image Translation  
  • StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation 
  • Conditional Image-to-Image Translation 
  • Toward Multimodal Image-to-Image Translation   
  • Unsupervised Image-to-Image Translation Networks  
  • Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 
  • Image-to-Image Translation with Conditional Adversarial Nets   
  • Learning to Discover Cross-Domain Relations with Generative Adversarial Networks  
  • Unsupervised Cross-Domain Image Generation  
  • Coupled Generative Adversarial Networks  

Open Set DA

  • Learning Factorized Representations for Open-set Domain Adaptation 
  • Open Set Domain Adaptation by Backpropagation 
  • Open Set Domain Adaptation 

Partial DA

  • Partial Adversarial Domain Adaptation  
  • Importance Weighted Adversarial Nets for Partial Domain Adaptation 
  • Partial Transfer Learning with Selective Adversarial Networks  

Multi source DA

  • Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift 

Applications

Object Detection

  • Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation 
  • Domain Adaptive Faster R-CNN for Object Detection in the Wild 

Semantic Segmentation

  • Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation 
  • Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes 

Person Re-identification

  • Person Transfer GAN to Bridge Domain Gap for Person Re-Identification 
  • Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification 

Others

  • Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer 

Benchmarks

  • Syn2Real: A New Benchmark forSynthetic-to-Real Visual Domain Adaptation  

 

转载地址:http://khukm.baihongyu.com/

你可能感兴趣的文章
不会发布npm包?进来看看?
查看>>
yum和源码安装redis
查看>>
女生到底适不适合做程序员?!
查看>>
Java并发包分析——BlockingQueue
查看>>
我见过的最好的websocket 介绍
查看>>
PHP 简例 RestFul
查看>>
Linux Redhat 一般用户不能执行sudo有关问题的解决方法
查看>>
ceph13跟ceph12配置文件在启动要增加的内容——2019_10
查看>>
华为 思科 设备 命令行取消分屏显示
查看>>
制作本地yum源
查看>>
PXE + Kickstart v2
查看>>
SED与AWK学习笔记
查看>>
CCNP学习之路由协议ISIS
查看>>
杂记 - 渐行渐远去的8090~
查看>>
css框架图
查看>>
CentOS linux操作系统关闭Sendmail服务命令
查看>>
我的友情链接
查看>>
HPUX11.31U ia64安装配置详细过程文档
查看>>
DB响应时间测试
查看>>
HostEase虚拟主机抢滩中国网站空间市场占据天时地利人和
查看>>